MINUTES:

1. Approval of the December 19, 2016 meeting minutes.
 The minutes were approved.

2. Announcements
 No new announcements.

3. New business

3a. Revision of charge for the new CSM Standards & Credits Committee

 Motion: To approve the charge for the new CSM Standards & Credits Committee

 Rationale: CSM currently shares three committees with CLA: Academic Affairs; Majors, Honors, and Special Programs; and Standards and Credits. We are proposing to separate the Standards and Credits committee and have a CSM-only committee in its place. Proposed charge for the new CSM Standards & Credits Committee The Standards & Credits committee shall consider grading and course credit policies; it shall consider petitions for waivers of graduation requirements (other than General Education and major requirements); it shall review policies regarding proficiency, advanced standing and transfer credit; it shall oversee the readmission process for CSM students following suspension or dismissal; and it shall, in general oversee the maintenance of high academic standards.

 - There have been problems with re-admitting students in a timely manner because faculty tend not to meet during summer. (Approx. 100 students apply for re-admission per year; many applications are routine.)
 - A team of three (Marietta, Ebru, Felecia) shall continuously review and expedite routine re-admission applications.
 - Still might need committee on-tap to handle occasional problematic re-admission cases (maybe 10% of all cases) – rotating 3-6 members from CSM departments as needed?
 - CSM Senate asks: could CSM Senate act as Standards and Credits Committee temporarily? Can problematic cases be dealt with by dept. chairs?

 The motion was approved.
3b. Graduation requirements for Bachelor of Science Degrees in Electrical and Computer Engineering.

Motion: To approve the graduation requirements for Bachelor of Science Degrees in Electrical and Computer Engineering.

Rationale: 1. Students must maintain a minimum 2.0 GPA in all major related courses required for the Electrical or Computer Engineering major (Major GPA Computation: all courses including mathematics, physics, engineering, computer science, and thematic electives that are used to fulfill degree requirements, if a course is repeated, only the most recent course grade shall be used).
2. Students must receive at least a C- in all mathematics, physics, engineering, computer science, thematic elective courses that are used to fulfill degree requirements.
3. Students may take one thematic elective course P/F. All other major related courses must be graded.
4. To graduate with Honors in Electrical or Computer Engineering, students must achieve the following:
 * 3.000 GPA overall as calculated in 1.
 * 3.300 GPA in the major as calculated in 2.
 * Complete and present an honors thesis that the Engineering faculty deem worthy of Honors recognition

The motion was approved.

3c. Revision of Computer Science Capstone Sequence

Motion: To approve Computer Science Capstone sequence change.

Rationale: We intend to replace the current capstone sequence (cs680, cs681, cs682, and cs683) with a three course sequence: cs680 offered during the first semester) followed by cs681 and cs682 offered the following semester. This will allow the students a reasonable completion schedule because both cs680 and the pair cs681,cs682 will be offered every semester.

The existing sequence is inefficient: students have to wait one year before taking the next course in the sequence, which is especially problematic for international students who need to be enrolled full-time.

The motion was approved.

3d. Revision of CS240 Programming in C

Motion: To pre-approve the change in pre-requisites for CS240 Programming in C.

Rationale: CS 210 and CS 240 have evolved and become independent of each other. Thus the co-requisite is removed.

210 and 240 have no overlap: for example, students doing very well in 240 have often failed or have had to withdraw from 210 (another big problem for international students).

The motion was approved.

3e. Revision of Chem 458 Medicinal Chemistry

Motion: To pre-approve the change in pre-requisites for CHEM458 Medicinal Chemistry.

Rationale: The previous course prerequisite was Chem254 (Organic Chemistry II). The Department has changed the course number for that course, which is now offered under Chem252.

The motion was approved.
3f. Revision of Chem 658 Medicinal Chemistry
 Motion: To approve the change in pre-requisites for CHEM658 Medicinal Chemistry.
 Rationale: The previous course prerequisite was Chem254 (Organic Chemistry II). The Department has changed the course number for that course, which is now offered under Chem252.

 The motion was approved.

3g. Revision of Physics 108 College Physics II
 Motion: To pre-approve the change in pre-requisites for PHYSICS108 College Physics II.
 Rationale: It is essential for students to demonstrate a thorough understanding of the concepts in Physics 107 before moving on to Physics 108.

 There is currently a high DWF rate because students lack the appropriate background (Physics 107) or attempt too many courses concurrently. Motions 3g-3i are to make 107 the pre-requisite for 108 and, 113 the pre-requisite for 114.

 Note: Physics 181 is the lab course studied concurrently with 107/113; Physics 182 is the lab course associated with 108/114.

3h. Revision of Physics 114 Fundamentals of Physics II
 Motion: To pre-approve the change in pre-requisites for PHYSICS114 Fundamentals of Physics II.
 Rationale: The course work of Physics 113 and 181 are associated. Pedagogically, it is in the best interest of the student to complete the first part of the lecture sequence and the first part of the lab sequence before moving on to engage with the second part of both components.

3i. Revision of Physics 182 Physics Laboratory II
 Motion: To pre-approve the change in pre-requisites for PHYSICS182 Physics Laboratory II.
 Rationale: It is essential for students to demonstrate a thorough understanding of the concepts in Physics 181 before moving on to Physics 182.

 Motions in items 3g-i were approved.

3j. Addition of Physics 607 Experiments in Squishy Physics
 Motion: To approve the new course of PHYSICS607 Experiments in Squishy Physics.
 Rationale: The physics of soft matter is now widely recognized as a major sub-field of Condensed Matter Physics, with its own conference series, about a dozen peer reviewed journals and the focus of research funding and high profile academic and industrial research efforts both nationally and internationally. This area of physics, which is not presently addressed directly in any of our course offerings, deals with the category of physical systems that are not adequately described by traditional definitions of simple liquids or crystalline solids. Soft materials such as foams, gels, colloids, and many important biological systems fall into this category. These "squishy" materials can exhibit ability to hold structure and store elastic energy like a solid, yet at the same time, the energies associated with structural deformations are comparable to thermal energies at room temperature. While the study of soft matter reveals surprising and exciting physical insights at a fundamental level, the analytical tools and methods we use to describe these materials (and teach in this course) also have well established industrial and technological applications. The food industry makes major R&D investments into manipulating the rheology of foods so they have desired texture and consistency in consumer's hands and mouths. Similarly, cosmetic products such as tooth paste, shaving gels and foams, soaps, hand creams etc are all carefully rheologically characterized before going to market. For the reasons noted above, the offering of a soft-condensed matter physics course advances both pedagogical and career development goals which are central to the Applied Physics graduate program. Importantly, this subject
matter is also highly conducive to being offered as a laboratory-based course using lab space on campus without requirements extraordinary chemical safety hazards, high temperatures, radiation etc. The measurements performed in this class are ideally suited to a “table-top” physics setting yet reveal phenomena which have broad implications. For example the first experiment of the semester follows closely Perrin's original experimental realization of Einstein's 1905 formulation of a theory to describe Brownian motion, providing direct evidence that matter is composed of molecules. At the same time, this experiment uses modern experimental microscopy and image processing methods which have practical applications throughout the rest of the course and in industry settings.

The motion was approved.

4. Other business

No other business

5.

The meeting was adjourned at 3.45pm.